Reduction for Constrained Variational Problems on 3d Null Curves
نویسنده
چکیده
We consider the optimal control problem for null curves in de Sitter 3-space defined by a functional which is linear in the curvature of the trajectory. We show how techniques based on the method of moving frames and exterior differential systems, coupled with the reduction procedure for systems with a Lie group of symmetries lead to the integration by quadratures of the extremals. Explicit solutions are found in terms of elliptic functions and integrals.
منابع مشابه
ar X iv : m at h / 03 07 21 6 v 1 [ m at h . D G ] 1 6 Ju l 2 00 3 COISOTROPIC VARIATIONAL PROBLEMS
In this article we study constrained variational problems in one independent variable defined on the space of integral curves of a Frenet system in a homogeneous space G/H. We prove that if the Lagrangian is G-invariant and coisotropic then the extremal curves can be found by quadratures. Our proof is constructive and relies on the reduction theory for coisotropic optimal control problems. This...
متن کاملVariational integrators for constrained dynamical systems
A variational formulation of constrained dynamics is presented in the continuous and in the discrete setting. The existing theory on variational integration of constrained problems is extended by aspects on the initialization of simulations, the discrete Legendre transform and certain postprocessing steps. Furthermore, the discrete null space method which has been introduced in the framework of...
متن کاملFree and constrained equilibrium states in a variational problem on a surface
We study the equilibrium states for an energy functional with a parametric force field on a region of a surface. Consideration of free equilibrium states is based on Lyusternik - Schnirelman's and Skrypnik's variational methods. Consideration of equilibrium states under a constraint of geometrical character is based on an analog of Skrypnik's method, described in [P. Vyridis, {it Bifurcation in...
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملA Gradient Descent Procedure for Variational Dynamic Surface Problems with Constraints
Many problems in image analysis and computer vision involving boundaries and regions can be cast in a variational formulation. This means that m-surfaces, e.g. curves and surfaces, are determined as minimizers of functionals using e.g. the variational level set method. In this paper we consider such variational problems with constraints given by functionals. We use the geometric interpretation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008